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Note 

An Artificial Energy Method for 
Calculating Flows with Shocks* 

INTRODUCTION 

Many important processes in fluid dynamics may be treated as adiabatic except in 
certain exeptional regions where dissipative effects play an essential role, e.g., shocks, 
boundary layers, etc. The artificial-viscosity method, first introduced by von 
Neumann and Richtmyer, provides a physically intuitive and computationally 
effective technique for treating flows with embedded shocks. Simply stated, this 
method introduces an artificial viscous pressure term in regions of compression in 
such a manner that an increase in entropy occurs shock transition zones. 

This approach allows one to separately view the entropy production within a 
physical model from that inherent in any one of a number of numerical techniques for 
calculating solutions of the model. Certain difficulties arise, however, in attempting to 
adapt this technique directly to transonic flow problems. Although the resolution of 
these difficulties is not itself the subject of this paper, the questions they raise have 
motivated this study and have led to a viewpoint which may be of more general 
interest. 

Briefly, this paper describes how dissipative flows can be induced by reducing the 
total energy available for adiabatic processes in shock zones. Section 1 describes a 
class of inviscid fluid flows, here called semiflows, which differ from one another 
through the law expressing the conservation of a modified “total energy” expresion. 
Section 2 discusses the thermodynamic differences among semiflows and establishes a 
condition which produces dissipative flows. This has the effect of modifying the 
pressure in regions of compression in a manner analogous to the artiliciallviscosity 
method. For a perfect gas the effect is equivalent to suitably modifying the gas 
constant in the equation of state. 

In order to test the validity of the concepts discussed in the paper a comparison of 
numerical solutions of a Riemann problem employing MacCormack’s method was 
made using the usual non-adiabatic equations and the artificial energy method of this 
paper. The result indicates that the dissipation effect predicted by the analytical 
formulation is reflected in the numerical method as well. 

* This report was prepared as a result of work performed under NASA Contract NASl-l4lOl at 
ICASE. NASA Langley Research Center, Hampton, Va. 23646. 
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1. CONSERVATIION LAWS FOR INVISCID FLUIDS 

The basic variables describing inviscid fluids are p = density, e = specific internal 
energy, p = pressure, and u = velocity. An important auxiliary variable is the total 
specific energy E(u) given by E(u) = $I’ + e. 

Certain differentiation operators with respect to a velocity u will be useful: 

d,$ = a,$ + div(u$), 

D,# = a,# + u grad 4 
(1.1) 

in which 4 is a scalar function. 
The following discussion assumes that p is given by an equation of state: 

p =p@, e). An adiabatic inviscid flow is then described by the conservation laws 

(mass) 

(momentum) 

(energy > 

B”p = 0, 

b,@(U <i)) + div(p ci) = 0, 

fi&pE(u)) + div(pu) = 0; 

i = 1,2, 3, (1.2) 

where Gil i = 1,2, 3, denote fixed vectors in the direction of the coordinate axes. 
The following provides a concise description of these laws: 

THEOREM. A necessary and sufJicient condition that @, u, e) satisfy (1.2) is that 

d&E(v)) + div( pv) = 0 (1.3) 

for every v such that v - u = const. 

The proof follows by noting that for every < = const, if v = u + c, then 
E(v) = E(u) + (u c) + (5 9/2 and the result follows by equating like powers of c in 
(1.3). 

Consider the artificial total energy expression I?(v) given by 

E(v) = E(v) -f(u2/2, e) (1.4) 

in which f is a suitable convex function of its arguments as explained in the following 
section. Flows determined by the condition that 

d@?(v)) + div(pv) = 0 (1.5) 

for every v such that v -u = const will be called semlyows; thus semiflows differ 
from (1.2) in that conservation of “energy” is expressed by 

d,@(u)) + div(pu) = 0. (1.6) 

As discussed in the next section, differences among semiflows arise from 
differences in thermodynamic assumptions arising from the choice of B(v). 
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2. DISSIPATIVE SEMIFLOWS 

An important thermodynamic relationship is 

de +p dp-’ = Tds (2.1) 

in which s is the entropy and T is the temperature. Since semiflows conserve mass, it 
follows that 

d&e) = pTD,s -p div u. P-2) 

Since semiflows also conserve momentum, there results, after some manipulation, 

d,@u*/2) = - u gradp. (2.3) 

Thus, referring to (1.2), there follows 

ti&pE(u)) + div(pu) = pTD,s 

so that the semiflow (f= 0 in (1.4)) describing (1.2) implies, and is implied by, 
D,s = 0 which is the condition for adiabatic flow. 

When f f 0 in (1.4) the semiflows described by (1.5) will, generally, be non- 
adiabatic. The physically important class of such flows are those which are 
dissipative, i.e., D,s > 0. For simplicity suppose f = au*/2 + /3e, where 0 < a, /I < 1. 
The conservation of “energy” as expressed by (1.6) yields, using (2.2) and (2.3), 

0 = 6,(&(u)) + div(pu) 

=au.gradp+/?p.divu+(l -/?)pTD,s; (2.4) 

this class of semiflows will therefore be dissipative if 

au.gradp+pp.divu<O. (2.5) 

The essential features of this argument can be expected to remain valid when the 
parameters a and p are allowed to vary in certain regions. In particular, by taking a 
and p as non-negative parameters in regions of compression (u gradp < 0, 
p div u < 0) and zero elsewherefwill measure the energy lost by entropy production 
in regions of compression. The resulting dissipative semiflows should furnish solution 
of (2.4) which, as a + 0, /3 -+ 0, converge in a weak sense to the physically relevant 
solution of (1.2) when shocks are present. 

Clearly, (2.5) will be satisfied by setting 

a=L,ju’gradpl, u.gradp<O 

= 0, u ’ gradp>O 

581/38/l-8 
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p=&)divul, 

= 0, 

div u < 0 

div u > 0, 

where A, and 1, are non-negative. Other, more computationally effective, choices can 
also be employed. For a perfect gas the ratio p/p will then be given by 

P/P= (Y- w-u -du2/2)/(1 -P) (2.6) 

since E = (1 - a)u’ -t (1 - P)e and e = (y - 1))‘p/p; the effect is thus a modification 
of the pressure. 

In order to test the application of this idea to shock capturing techniques a 
numerical study of a Riemann problem was made. For a gas with y = 1.4 initial 
conditions were chosen as 

x<o x>o 

p = 0.445 
u = 0.698 
p = 3.528 

p = 0.5 
u = 0. 
p=o.511 

The exact solution of Eqs. (1.2) with these initial conditions is shown by the solid 
lines in Figs. 1 and 2. Figure 1 shows the result of integrating the adiabatic 
invisicdflow (1.2) by a second-order MacCormack finite-difference scheme. Figure 2 
shows the result of applying the same numerical scheme to calculate the semiflow 
described by (2.4) in which a = 0 and 

p=o if A&-u;+, -u:-, >O 

(0.3)AiU” 
= min,(A,u”) 

if A& < 0, 

where u; = u(i Ax, n At) in which Ax and At denote space and time mesh parameters, 
respectively. From (2.6), 

; = g+ (I?? - ;u’). 

This is equivalent to treating the adiabatic Eqs. (1.2) using the modified equation of 
statep=(y’-l)pewithy’-l=((y-1)(1-p)-’. 

As Fig. 2 indicates, the artificial energy method produced a slightly broader shock 
transition zone than the solution obtained in Fig. 1; however, the solution obtained by 
this method effectively eliminated the oscillations behind the shock and ahead of the 
rarefaction which are evident in Fig. 1. No difference in these solutions occurred at 
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FIG. 1. Numerical solution (MacCormack) of the adiabatic conservation laws (Eq. (1.2)). 
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FIG. 2. Numerical solution (MacCormack) by the artificial energy method (Eq. (2.4)). 
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the contact discontinuity where both the pressure and velocity are continuous because 
no dissipation is added at the contact as a result of condition (2.5). 

For steady isentropic flows the conservation of energy may be expressed by the 
Bernoulli law. The above discussion suggests that steady dissipative semiflows can be 
induced by a suitable modification of the Bernoulli expression in regions of 
compression. This may prove useful in numerical methods for treating transonic 
flows past bodies. 

ACKNOWLEDGMENTS 

1 would like to thank A. Harten and H. Tal-Ezer for assistance with the numerical experiments and to 
express appreciation to Y. Hussaini and J. Strikwerda for many valuable discussions. 

RECEIVED: May 16, 1979; REVISED: September 29, 1979 

MILTON E. ROSE 

institute for Computer Applications in Science and Engineering 
NASA Langley Research Center 

Hampton, Virginia 23665 

581/38/l-9 


